617 research outputs found

    Simulated recovery of Europa's global shape and tidal Love numbers from altimetry and radio tracking during a dedicated flyby tour

    Get PDF
    The fundamental scientific objectives for future spacecraft exploration of Jupiter's moon Europa include confirmation of the existence of subsurface ocean beneath the surface ice shell and constraints on the physical properties of the ocean. Here we conduct a comprehensive simulation of a multiple-flyby mission. We demonstrate that radio tracking data can provide an estimate of the gravitational tidal Love number k2 with sufficient precision to confirm the presence of a liquid layer. We further show that a capable long-range laser altimeter can improve determination of the spacecraft position, improve the k2 determination (2 (3-4% error), which is directly related to the amplitude of the surface tidal deformation. These measurements, in addition to the global shape accurately constrained by the long altimetric profiles, can yield further constraints on the interior structure of Europa. Key Points A multiple-flyby mission to Europa can recover key geophysical parameters Laser altimetry can uniquely and accurately recover the global shape of Europa Laser altimetry enables the recovery of h2 to constrain the ice shell thicknes

    Analysis of Cassini radio tracking data for the construction of INPOP19a: a new estimate of the Kuiper belt mass

    Get PDF
    Context. Recent discoveries of new trans-Neptunian objects have greatly increased the attention by the scientific community to this relatively unknown region of the solar system. The current level of precision achieved in the description of planet orbits has transformed modern ephemerides in the most updated tools for studying the gravitational interactions between solar system bodies. In this context, the orbit of Saturn plays a primary role, especially thanks to Cassini tracking data collected during its 13-year mission around the ringed planet. Planetary ephemerides are currently mainly built using radio data, in particular with normal points derived from range and Doppler observables exchanged between ground stations and interplanetary probes. Aims. We present an analysis of Cassini navigation data aimed at producing new normal points based on the most updated knowledge of the Saturnian system developed throughout the whole mission. We provide additional points from radio science dedicated passes of Grand Finale orbits and Titan flybys. An updated version of the INPOP planetary ephemerides based upon these normal points is presented, along with a new estimate of the mass of trans-Neptunian object rings located in the 2:1 and 3:2 mean motion resonances with Neptune. Methods. We describe in detail the orbit determination process performed to construct the normal points and their associated uncertainties and how we process those points to produce a new planetary ephemeris. Results. From the analysis, we obtained 623 new normal points for Saturn with metre-level accuracy. The ephemeris INPOP19a, including this new dataset, provides an estimated mass for the trans-Neptunian object rings of (0.061  ±  0.001)M⊕

    Light-time computations for the BepiColombo radioscience experiment

    Get PDF
    The radioscience experiment is one of the on board experiment of the Mercury ESA mission BepiColombo that will be launched in 2014. The goals of the experiment are to determine the gravity field of Mercury and its rotation state, to determine the orbit of Mercury, to constrain the possible theories of gravitation (for example by determining the post-Newtonian (PN) parameters), to provide the spacecraft position for geodesy experiments and to contribute to planetary ephemerides improvement. This is possible thanks to a new technology which allows to reach great accuracies in the observables range and range rate; it is well known that a similar level of accuracy requires studying a suitable model taking into account numerous relativistic effects. In this paper we deal with the modelling of the space-time coordinate transformations needed for the light-time computations and the numerical methods adopted to avoid rounding-off errors in such computations.Comment: 14 pages, 7 figures, corrected reference

    New constraints on the location of P9 obtained with the INPOP19a planetary ephemeris

    Get PDF
    Context. We used the new released INPOP19a planetary ephemerides benefiting from Jupiter-updated positions by the Juno mission and reanalyzed Cassini observations. Aims. We test possible locations of the unknown planet P9. To do this, we used the perturbations it produces on the orbits of the outer planets, more specifically, on the orbit of Saturn. Methods. Two statistical criteria were used to identify possible acceptable locations of P9 according to (i) the difference in planetary positions when P9 is included compared with the propagated covariance matrix, and (ii) the χ2 likelihood of postfit residuals for ephemerides when P9 is included. Results. No significant improvement of the residuals was found for any of the simulated locations, but we provide zones that induce a significant degradation of the ephemerides. Conclusions. Based on the INPOP19a planetary ephemerides, we demonstrate that if P9 exists, it cannot be closer than 500 AU with a 5 M⊕ and no closer than 650 AU with a 10 M⊕ . We also show that there is no clear zone that would indicate the positive existence of planet P9, but there are zones for which the existence of P9 is compatible with the 3σ accuracy of the INPOP planetary ephemerides

    Hardware prototyping and validation of a W-ΔDOR digital signal processor

    Get PDF
    Microwave tracking, usually performed by on ground processing of the signals coming from a spacecraft, represents a crucial aspect in every deep-space mission. Various noise sources, including receiver noise, affect these signals, limiting the accuracy of the radiometric measurements obtained from the radio link. There are several methods used for spacecraft tracking, including the Delta-Differential One-Way Ranging (ΔDOR) technique. In the past years, European Space Agency (ESA) missions relied on a narrowband ΔDOR system for navigation in the cruise phase. To limit the adverse effect of nonlinearities in the receiving chain, an innovative wideband approach to ΔDOR measurements has recently been proposed. This work presents the hardware implementation of a new version of the ESA X/Ka Deep Space Transponder based on the new tracking technique named Wideband ΔDOR (W-ΔDOR). The architecture of the new transponder guarantees backward compatibility with narrowband ΔDOR

    Testing the gravitational redshift with an inner Solar System probe: the VERITAS case

    Full text link
    The NASA Discovery-class mission VERITAS, selected in June 2021, will be launched towards Venus after 2027. In addition to the science instrumentation that will build global foundational geophysical datasets, VERITAS proposed to conduct a technology demonstration for the Deep Space Atomic Clock (DSAC-2). A first DSAC successfully operated in low-Earth orbit for more than two years, demonstrated the trapped ion atomic clock technology, and established a new level of performance for clocks in space. DSAC-2 would have further improvements in size, power, and performance. It would host a 1×10−131\times{10}^{-13} grade USO to produce a frequency output with short-term stability of less than 2×10−13/τ2\times{10}^{-13}/\sqrt\tau (where τ\tau is the averaging time). However, due to funding shortfalls, DSAC-2, had to be canceled. The initially foreseen presence of an atomic clock on board the probe, however, raised the question whether this kind of instrumentation could be useful not only for navigation and time transfer but also for fundamental physics tests. In this work, we consider the DSAC-2 atomic clock and VERITAS mission as a specific example to measure possible discrepancies in the redshift predicted by General Relativity by using an atomic clock onboard an interplanetary spacecraft. In particular we investigate the possibility of measuring possible violations of the Local Lorentz Invariance and Local Position Invariance principles. We perform accurate simulations of the experiment during the VERITAS cruise phase. We consider different parametrizations of the possible violations of the General Relativity, different operational conditions, and several different assumptions on the expected measurement performance. Our analysis shows the scientific value of atomic clocks like DSAC-2 hosted onboard interplanetary spacecraft.Comment: 15 pages, 9 figure

    The Determination of Titan Gravity Field from Doppler Tracking of the Cassini Spacecraft

    Get PDF
    In its tour of the Saturnian system, the spacecraft Cassini is carrying out measurements of the gravity field of Titan, whose knowledge is crucial for constraining the internal structure of the satellite. In the five flybys devoted to gravity science, the spacecraft is tracked in X (8.4 GHz) and Ka band (32.5 GHz) from the antennas of NASA's Deep Space Network. The use of a dual frequency downlink is used to mitigate the effects of interplanetary plasma, the largest noise source affecting Doppler measurements. Variations in the wet path delay are effectively compensated by means of advanced water vapor radiometers placed close to the ground antennas. The first three flybys occurred on February 27, 2006, December 28, 2006, and June 29, 2007. Two additional flybys are planned in July 2008 and May 2010. This paper presents the estimation of the mass and quadrupole field of Titan from the first two flybys, carried out by the Cassini Radio Science Team using a short arc orbit determination. The data from the two flybys are first independently fit using a dynamical model of the spacecraft and the bodies of the Saturnian system, and then combined in a multi-arc solution. Under the assumption that the higher degree harmonics are negligible, the estimated values of the gravity parameters from the combined, multi-arc solution are GM = 8978.1337 +/- 0.0025 km(exp 3) / s(exp 2), J (sub 2) = (2.7221 +/- 0.0185) 10 (exp -5) and C (sub 22) = (1.1159 +/- 0.0040) 10 (exp -5) The excellent agreement (within 1.7 sigma) of the results from the two flybys further increases the confidence in the solution and provides an a posteriori validation of the dynamical model

    The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments

    Full text link
    In 2002 a measurement of the effect of solar gravity upon the phase of coherent microwave beams passing near the Sun has been carried out with the Cassini mission, allowing a very accurate measurement of the PPN parameter γ\gamma. The data have been analyzed with NASA's Orbit Determination Program (ODP) in the Barycentric Celestial Reference System, in which the Sun moves around the centre of mass of the solar system with a velocity v⊙v_\odot of about 10 m/sec; the question arises, what correction this implies for the predicted phase shift. After a review of the way the ODP works, we set the problem in the framework of Lorentz (and Galilean) transformations and evaluate the correction; it is several orders of magnitude below our experimental accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008

    Space-time localization of inner heliospheric plasma turbulence using multiple spacecraft radio links

    Get PDF
    Radio remote sensing of the heliosphere using spacecraft radio signals has been used to study the near-sun plasma in and out of the ecliptic, close to the sun, and on spatial and temporal scales not accessible with other techniques. Studies of space-time variations in the inner solar wind are particularly timely because of the desire to understand and predict space weather, which can disturb satellites and systems at 1AU and affect human space exploration. Here we demonstrate proof-of-concept of a new radio science application for spacecraft radio science links. The differing transfer functions of plasma irregularities to spacecraft radio up- and downlinks can be exploited to localize plasma scattering along the line of sight. We demonstrate the utility of this idea using Cassini radio data taken in 2001-2002. Under favorable circumstances we demonstrate how this technique, unlike other remote sensing methods, can determine center-of-scattering position to within a few thousandths of an AU and thickness of scattering region to less than about 0.02 AU. This method, applied to large data sets and used in conjunction with other solar remote sensing data such as white light data, has space weather application in studies of inhomogeneity and nonstationarity in the near-sun solar wind.Comment: 28 Pages including 14 Figures (7 unique figures in both inline format and full-page format)
    • …
    corecore